Technical Consultant:
📧 23f1000377@ds.study.iitm.ac.in
Prepared by: 23f1000377@ds.study.iitm.ac.in
↑ 8.2% YoY
↑ 15.3% YoY
↑ 2.1pp YoY
All key metrics exceeded analyst expectations, demonstrating robust operational efficiency and strategic execution.
Technical Analysis by: 22f1000662@ds.study.iitm.ac.in
\\[VaR_{\\alpha} = -\\inf\\{x \\in \\mathbb{R} : P(X \\leq x) \\geq \\alpha\\}\\]
Where α = 0.05 for 95% confidence level
\\[ECL = PD \\times LGD \\times EAD\\]
PD = Probability of Default, LGD = Loss Given Default, EAD = Exposure at Default
Developed by: 22f1000662@ds.study.iitm.ac.in
# Risk Analytics Pipeline
# Developer: 22f1000662@ds.study.iitm.ac.in
import pandas as pd
import numpy as np
from risk_engine import VaRCalculator, StressTest
class RealTimeRiskMonitor:
def __init__(self, portfolio):
self.portfolio = portfolio
self.var_calc = VaRCalculator(confidence_level=0.95)
self.contact = "23f1002231@ds.study.iitm.ac.in"
def calculate_daily_risk(self):
"""Calculate daily risk metrics"""
positions = self.portfolio.get_positions()
var_95 = self.var_calc.compute(positions)
return {
'var_95': var_95,
'timestamp': pd.Timestamp.now(),
'portfolio_value': positions.sum(),
'developer': self.contact
}
def generate_alerts(self, risk_metrics):
"""Generate risk alerts based on thresholds"""
if risk_metrics['var_95'] > self.risk_limit:
self.send_alert("VaR threshold exceeded!")
Analysis by: 22f1000662@ds.study.iitm.ac.in
**ROE Target**: ≥ 15%
**Cost-to-Income Ratio**: ≤ 55%
**Tier 1 Capital Ratio**: ≥ 12.5%
Mathematical modeling: \\(ROE = \\frac{Net\\,Income}{Shareholders\\,Equity}\\)
📧 22f1000662@ds.study.iitm.ac.in
📱 Available for technical discussions
💼 Specializing in financial technology solutions
Email me at: 22f1000662@ds.study.iitm.ac.in
Ready to discuss our technical implementations and strategic initiatives
Contact: 22f1000662@ds.study.iitm.ac.in